At neutral pH the chronological lifespan of Hansenula polymorpha increases upon enhancing the carbon source concentrations

نویسندگان

  • Adam Kawałek
  • Ida J. van der Klei
چکیده

Dietary restriction is generally assumed to increase the lifespan in most eukaryotes, including the simple model organism Saccharomyces cerevisiae. However, recent data questioned whether this phenomenon is indeed true for yeast. We studied the effect of reduction of the carbon source concentration on the chronological lifespan of the yeast Hansenula polymorpha using four different carbon sources. Our data indicate that reduction of the carbon source concentration has a negative (glucose, ethanol, methanol) or positive (glycerol) effect on the chronological lifespan. We show that the actual effect of carbon source concentrations largely depends on extracellular factor(s). We provide evidence that H. polymorpha acidifies the medium and that a low pH of the medium alone is sufficient to significantly decrease the chronological lifespan. However, glucose-grown cells are less sensitive to low pH compared to glycerol-grown cells, explaining why only the reduction of the glycerol-concentration (which leads to less medium acidification) has a positive effect on the chronological lifespan. Instead, the positive effect of enhancing the glucose concentrations is much larger than the negative effect of the medium acidification at these conditions, explaining the increased lifespan with increasing glucose concentrations. Importantly, at neutral pH, the chronological lifespan also decreases with a reduction in glycerol concentrations. We show that for glycerol cultures this effect is related to acidification independent changes in the composition of the spent medium. Altogether, our data indicate that in H. polymorpha at neutral pH the chronological lifespan invariably extends upon increasing the carbon source concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Yeast Chronological Lifespan by Methylamine

BACKGROUND Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth. METHODO...

متن کامل

Comparison of biochemical properties of recombinant endoglucanase II of Trichoderma reesei in methylotrophic yeasts, Pichia pastoris and Hansenula polymorpha

Bioconversion of cellulosic material into bioethanol needs cellulase complex enzymesthat contain endoglucanase, exoglucanase and beta glucosidase. One of the most important organisms that produce cellulases is the filamentous fungi, Trichoderma reesei which able to secrete large amounts of different cellulases. These enzymes are probably the most widely used cellulases industrially, however, th...

متن کامل

Comparison of biochemical properties of recombinant phytase expression in the favorable methylotrophic platforms of Pichia pastoris and Hansenula polymorpha

Phytic acid is the dominant form of phosphorous in plant seeds. However, phytic acid cannot beutilized by animals and causes them serious phosphate deficiency. Utilization of phytase as ananimal feed additive can affect liberation of phosphor and its mineral availability. In this study,heterologous expression of the A. niger phyA gene was investigated in the methylotrophic yeastsP. pastoris and...

متن کامل

Heterologous complementation of peroxisome function in yeast: the Saccharomyces cerevisiae PAS3 gene restores peroxisome biogenesis in a Hansenula polymorpha per9 disruption mutant.

PER genes are essential for the biogenesis of peroxisomes in the yeast Hansenula polymorpha. Here we describe the functional complementation of a H. polymorpha per9 disruption strain (delta per9) by a heterologous gene. The Saccharomyces cerevisiae Pas3p, a homologue of per9p, restored peroxisome biogenesis and peroxisomal protein import in the delta per9 mutant, allowing it to grow again on me...

متن کامل

Fluorescence analysis of the Hansenula polymorpha peroxisomal targeting signal-1 receptor, Pex5p.

Correct sorting of newly synthesized peroxisomal matrix proteins is dependent on a peroxisomal targeting signal (PTS). So far two PTSs are known. PTS1 consists of a tripeptide that is located at the extreme C terminus of matrix proteins and is specifically recognized by the PTS1-receptor Pex5p. We studied Hansenula polymorpha Pex5p (HpPex5p) using fluorescence spectroscopy. The intensity of Trp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014